De Moivre's Formula

Pronunciation: /də ˈmwɑvrə ˈfɔrmyələ/ Explain

De Moivre's formula is

This formula follows from the Euler relation,
e^(i*theta)=cos(theta)+i*sin(theta)
Applying the power rule for exponents,
(a^n)^m=a^(n*m)
gives
(e^(i*theta))^n=e^(i*n*theta)
Now use the Euler relation to substitute both sides of the equation
cos(2*theta)+i*sin(2*theta)

Example

Some of the trigonometric identities can be derived using De Moivre's Formula. For double angle formulas, start with the expression

cos(2*theta)+i*sin(2*theta)
Apply De Moivre's formula, giving
cos(2*theta)+i*sin(2*theta)=(cos(theta)+i*sin(theta))^2
Now expand the right side of the equation using the binomial theorem.
cos(2*theta)+i*sin(2*theta)=cos(theta)^2+2*i*cos(theta)*sin(theta)-sin(theta)^2
Since the imaginary parts of both sides of the equations must be equal and the real parts of both sides of the equations must be equal, this gives two identities.
cos(2*theta)=cos(theta)^2-sin(theta)^2, sin(2*theta)=2*cos(theta)*sin(theta)

References

  1. Bauer, George N. and Brooke, W. E.. Plane and Spherical Trigonometry. 2nd revised edition. pp 113-125. www.archive.org. D. C. Heath & Co.. 1917. Last Accessed 8/6/2018. http://www.archive.org/stream/planesphericaltr00bauerich#page/113/mode/1up/search/Moivre. Buy the book
  2. Rothrock, David A.. Elements of plane and spherical trigonometry. pp 101-107. www.archive.org. The Macmillan Company. 1917. Last Accessed 8/6/2018. http://www.archive.org/stream/elementsofplanes00rothiala#page/101/mode/1up/search/Moivre. Buy the book

Cite this article as:

McAdams, David E. De Moivre's Formula. 7/4/2018. All Math Words Encyclopedia. Life is a Story Problem LLC. http://www.allmathwords.org/en/d/demoivresformula.html.

Image Credits

Revision History

7/3/2018: Removed broken links, updated license, implemented new markup, implemented new Geogebra protocol. (McAdams, David E.)
1/22/2010: Added "References". (McAdams, David E.)
12/3/2008: Initial version. (McAdams, David E.)

All Math Words Encyclopedia is a service of Life is a Story Problem LLC.
Copyright © 2018 Life is a Story Problem LLC. All rights reserved.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License