
An ordered pair is a pair of values where the order is significant. This means that the ordered pair (a, b) may not be the same as the ordered pair (b, a). Ordered pairs are usually written in the form (a, b). The form <a, b> is sometimes used to avoid conflict with other uses of the notation (a ,b). Ordered pairs are used to define the terms function and relation. The first entry in an ordered pair is the abscissa. The second entry an ordered pair is the ordinate. The plural of abscissa is abscissae. In the ordered pair (4, 2), the abscissa is 4 and the ordinate is 2. Equality of Ordered PairsTwo ordered pairs are equal if and only if their corresponding elements are equal: (a_{1}, b_{1}) = (a_{2}, b_{2}) if and only if a_{1} = a_{2} and b_{1} = b_{2}. Ordered TriplesAn ordered triple is a set of three numbers where order matters. Ordered triples are used, among other things, to define a point in a three dimensional Cartesian space. An example of an ordered triple is (x_{0}, y_{0}, z_{0}). 
#  A  B  C  D 
E  F  G  H  I 
J  K  L  M  N 
O  P  Q  R  S 
T  U  V  W  X 
Y  Z 
All Math Words Encyclopedia is a service of
Life is a Story Problem LLC.
Copyright © 2018 Life is a Story Problem LLC. All rights reserved.
This work is licensed under a Creative Commons AttributionShareAlike 4.0 International License